Különböző magyarországi borvidékekről származó rozé borok fizikai-kémiai elemzése

Main Article Content

Rivera Geremie Barcheta
Czipa Nikolett

Absztrakt

A kutatás célja a magyarországi balatonboglári, egri és villányi borvidékről származó rozé borok fizikaikémiai összetételének, táplálkozástani hatásának elemzése és egészségügyi kockázatértékelése volt. Az alkalmazott módszerek között szerepelt a potenciometriás analízis a pH meghatározására, UV/VIS spektrometria pedig az összes fenoltartalom (total phenolic content, TPC) és a flavonoid tartalom (flavonoid content, FC) vizsgálatára. Általában a balatonboglári borok kapták a legmagasabb pH-t, TPC-t és FC-t. Az induktív csatolású plazma-optikai emissziós spektrometriát (ICP-OES) 12 elem (Ca, K, Mg, P, S, Al, B, Cu, Fe, Mn, Sr, Zn) koncentrációjának meghatározására használtuk. A balatonboglári boroknál a K, Mg, Al, Mn és Sr koncentrációja volt a legmagasabb. Az egri boroknál magasabb Ca és B koncentrációt mértünk, míg a villányi boroknál a P, S, Cu, Fe és Zn koncentrációja volt magasabb. Ugyanez a tendencia volt megfigyelhető a tápanyag-referenciaérték (NRV) hozzájárulások esetében is, mivel az elem koncentrációkat figyelembe vettük. A kockázatértékelés azt mutatta, hogy a vizsgált borok közül egyik sem jelent jelentős egészségügyi kockázatot.

Letöltések

Letölthető adat még nem áll rendelkezésre.

Article Details

Hogyan kell idézni
Rivera, G. B., & Czipa, N. (2024). Különböző magyarországi borvidékekről származó rozé borok fizikai-kémiai elemzése. Élelmiszervizsgálati Közlemények, 70(2), 5–12. https://doi.org/10.52091/EVIK-2024/2-1
Folyóirat szám
Rovat
Fókuszban

Hivatkozások

Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. (2020): Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Notulae Botanicae

Horti Agrobotanici Cluj-Napoca. (48):2. pp.: 716–734. https://doi.org/10.15835/nbha48211848

Baron, M.; Sochor, J.; Tomaskova, L.; Prusova, B.; Kumsta, M. (2017): Study on Antioxidant Components in Rosé Wine Originating from the Wine Growing Region of Moravia, Czech Republic. Erwerbs-Obstbau. (59). pp.: 253–262. https://doi.org/10.1007/s10341-016-0317-3

Caridi, F.; Pappaterra, D.; Belmusto, G.; Messina, M.; Belvedere, A.; D’Agostino, M.; Settineri, L. (2019): Radioactivity and Heavy Metals Concentration in Italian (Calabrian) DOC Wines. Applied Sciences. (9):21. p. 4584. https://doi.org/10.3390/app9214584

Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. (2021): Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety. Molecules. (26):1. p. 214. https://doi.org/10.3390/molecules26010214

Hegyközségek Nemzeti Tanácsa. (2023): Magyarország bortermelése borvidéki bontásban 2011-2023. https://www.hnt.hu/wp-content/uploads/2024/03/Bortermeles-2011-2023_adat-1.pdf

IRIS. (2024a): Boron and Compounds, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=410

IRIS (2024b): Copper, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=368

IRIS. (2024c): Manganese, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=373

IRIS. (2024d): Strontium, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=550

IRIS. (2024e). Zinc and Compounds, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=426

Ivanova-Petropulos, V.; Wiltsche, H.; Stafilov, T.; Stefova, M.; Motter, H.; Lankmayr, E. (2013): Multielement analysis of Macedonian wines by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS) and Inductively Coupled Plasma–Optical Emission Spectrometry (IP–OES) for their Classification. Macedonian Journal of Chemistry and Chemical Engineering. (32):2. pp. 265-281. https://doi.org/10.20450/mjcce.2013.447

Iwegbue, C.M.A. (2014): A survey of metal contents in some popular brands of wines in the Nigerian market: estimation of dietary intake and target hazard quotients. Macedonian Journal of Wine Research. (25):3. pp. 144-157. https://dx.doi.org/10.1080/09571264.2014.917616

Kim, D.; Jeong, S.W.; Lee, C.Y. (2003): Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. (81): pp. 321-326.

Kovács, B.; Győri, Z.; Prokisch, J.; Loch, J.; Dániel, P. (1996): A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Communications in Soil Science and Plant Analysis. (27):5-8. p. 1177.

Leborgne, C.; Lambert, M.; Ducasse, M.-A.; Meudec, E.; Verbaere, A.; Sommerer, N.; Boulet, J.-C.; Masson, G.; Mouret, J.-R.; Cheynier, V. (2022): Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules. (27):4. p. 1359. https://doi.org/10.3390/molecules27041359

Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. (2020): Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods. (9):12. p. 1785. https://doi.org/10.3390/foods9121785

Norocel, L.; Gutt, G. (2017): Study on the Evolution of Micro- and Macroelements During the Winemaking Stages: The Importance of Copper and Iron Quantification. Food and Environment Safety Journal. (16):1. pp. 5-12.

OIV (2019): OIV-MA-C1--01 Maximum acceptable limits of various substances contained in Wine, https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-c/annex-c-maximum-acceptable-limits-of-various-substances/maximum-acceptable

Papunidze, S.; Papunidze, G.; Chkhartishvili, I.; Seidishvili, N.; Mikeladze, Z. (2019): Mineral Element Content of some Georgian wines. Annals of Agrarian Science. (17): pp. 361–374.

Pasvanka, K.; Tzachristas, A.; Proestos, C. (2019): Quality Tools in Wine Traceability and Authenticity. In: Quality Control in the Beverage Industry. (Eds.: Grumezescu, A.M. & Holban, A.M.). Woodhead Publishing. Duxford. ISBN 9780128166826

Perez-Trujillo, J.-P.; Barbaste, M.; Medina, B. (2002): Contents of Trace and Ultratrace Elements in Wines from the Canary Islands (Spain) as Determined by ICP-MS. Journal of Wine Research. (13)3: pp. 243–256. https://doi.org/10.1080/0957126022000046529

Pour Nikfardjam, M.S.; Gausz, I.S.; Farkas, V. (2012): Determination of manganese in musts and wines from three different wine regions of Hungary (Vintages 1992 to 2001). Mitteilungen Klosterneuburg. (62):4. pp. 143–153.

Rossi, S.; Bestulić, E.; Horvat, I.; Plavša, T.; Lukić, I.; Bubola, M.; Ganić, K.K.; Ćurko, N.; Korenika, .-M.J.; Radeka, S. (2022): Comparison of different winemaking processes for improvement of phenolic composition, macro- and microelemental content, and taste sensory attributes of Teran (Vitis vinifera L.) red wines. LWT. (154). p. 112619. https://doi.org/10.1016/j.lwt.2021.112619

Sass-Kiss, A.; Kiss, J.; Havadi, B.; Adányi, N. (2008): Multivariate statistical analysis of botrytised wines of different origin. Food Chemistry. (110):3. pp. 742–750. https://doi.org/10.1016/j.foodchem.2008.02.059

Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. (299). pp. 152-178.

Tariba, B. (2011): Metals in Wine—Impact on Wine Quality and Health Outcomes. Biological Trace Element Research. (144). pp. 143–156. https://doi.org/10.1007/s12011-011-9052-7

Tôrres, A.; da Silva Lyra, W.; de Andrade, S.I.E.; Andrade, R.A.N.; da Silva, E.C.; Araújo, M.C.U.; da Nóbrega Gaião, E. (2011): A digital image-based method for determining of total acidity in red wines using acid–base titration without indicator. Talanta. (84):3. pp. 601–606. https://doi.org/10.1016/j.talanta.2011.02.002

Varga, T.; Molnár, M.; Molnár, A.; Jull, A.; Palcsu, L.; László, E. (2023): Radiocarbon dating of microliter sized Hungarian Tokaj wine samples. Journal of Food Composition and Analysis. (118). p. 105203. https://doi.org/10.1016/j.jfca.2023.105203

Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D. (2016): Rosé wine volatile composition and the preferences of Chinese wine professionals. Food Chemistry. (202). pp. 507–517. https://doi.org/10.1016/j.foodchem.2016.02.042

WHO. (1983): Evaluation of certain food additives and contaminants: Twenty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series no. 696. Geneva, Switzerland.

WHO. (2011): Evaluation of certain food additives and contaminants: Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series no. 966. Rome, Italy.

European Union. (2011): Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/ EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004.

Ugyanannak a szerző(k)nek a legtöbbet olvasott cikkei