Physico-Chemical Analysis of Rosé Wines From Different Hungarian Wine Regions

Main Article Content

Geremie Barcheta Rivera
Nikolett Czipa

Abstract

The aim of this research was to analyse the physico-chemical composition, nutritional impact, and health risk assessment of rosé wines originating from the Balatonboglár, Eger, and Villány wine regions of Hungary. The methods applied included potentiometric analysis for pH determination, UV/VIS spectrometry for total phenolic content (TPC) and flavonoid content (FC). Generally, Balatonboglár wines obtained the highest pH, TPC, and FC. Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) was used to determine the concentration of 12 elements (Ca, K, Mg, P, S, Al, B, Cu, Fe, Mn, Sr, Zn). Balatonboglár wines had the highest concentrations for K, Mg, Al, Mn, and Sr. Higher levels of Ca and B were measured in Eger wines, while Villány wines showed higher concentrations of P, S, Cu, Fe, and Zn. The same trend was observed in the case of the Nutrient Reference Value (NRV) contributions, as the element concentrations were considered. The risk assessment indicated that all wines posed no significant health risks.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rivera, G. B., & Czipa, N. (2024). Physico-Chemical Analysis of Rosé Wines From Different Hungarian Wine Regions. Journal of Food Investigation, 70(2), 5–12. https://doi.org/10.52091/EVIK-2024/2-1
Section
In Focus

References

Banc, R.; Loghin, F.; Miere, D.; Ranga, F.; Socaciu, C. (2020): Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars. Notulae Botanicae

Horti Agrobotanici Cluj-Napoca. (48):2. pp.: 716–734. https://doi.org/10.15835/nbha48211848

Baron, M.; Sochor, J.; Tomaskova, L.; Prusova, B.; Kumsta, M. (2017): Study on Antioxidant Components in Rosé Wine Originating from the Wine Growing Region of Moravia, Czech Republic. Erwerbs-Obstbau. (59). pp.: 253–262. https://doi.org/10.1007/s10341-016-0317-3

Caridi, F.; Pappaterra, D.; Belmusto, G.; Messina, M.; Belvedere, A.; D’Agostino, M.; Settineri, L. (2019): Radioactivity and Heavy Metals Concentration in Italian (Calabrian) DOC Wines. Applied Sciences. (9):21. p. 4584. https://doi.org/10.3390/app9214584

Gajek, M.; Pawlaczyk, A.; Szynkowska-Jozwik, M.I. (2021): Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety. Molecules. (26):1. p. 214. https://doi.org/10.3390/molecules26010214

Hegyközségek Nemzeti Tanácsa. (2023): Magyarország bortermelése borvidéki bontásban 2011-2023. https://www.hnt.hu/wp-content/uploads/2024/03/Bortermeles-2011-2023_adat-1.pdf

IRIS. (2024a): Boron and Compounds, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=410

IRIS (2024b): Copper, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=368

IRIS. (2024c): Manganese, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=373

IRIS. (2024d): Strontium, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=550

IRIS. (2024e). Zinc and Compounds, https://iris.epa.gov/ChemicalLanding/&substance_nmbr=426

Ivanova-Petropulos, V.; Wiltsche, H.; Stafilov, T.; Stefova, M.; Motter, H.; Lankmayr, E. (2013): Multielement analysis of Macedonian wines by Inductively Coupled Plasma–Mass Spectrometry (ICP–MS) and Inductively Coupled Plasma–Optical Emission Spectrometry (IP–OES) for their Classification. Macedonian Journal of Chemistry and Chemical Engineering. (32):2. pp. 265-281. https://doi.org/10.20450/mjcce.2013.447

Iwegbue, C.M.A. (2014): A survey of metal contents in some popular brands of wines in the Nigerian market: estimation of dietary intake and target hazard quotients. Macedonian Journal of Wine Research. (25):3. pp. 144-157. https://dx.doi.org/10.1080/09571264.2014.917616

Kim, D.; Jeong, S.W.; Lee, C.Y. (2003): Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. (81): pp. 321-326.

Kovács, B.; Győri, Z.; Prokisch, J.; Loch, J.; Dániel, P. (1996): A study of plant sample preparation and inductively coupled plasma emission spectrometry parameters. Communications in Soil Science and Plant Analysis. (27):5-8. p. 1177.

Leborgne, C.; Lambert, M.; Ducasse, M.-A.; Meudec, E.; Verbaere, A.; Sommerer, N.; Boulet, J.-C.; Masson, G.; Mouret, J.-R.; Cheynier, V. (2022): Elucidating the Color of Rosé Wines Using Polyphenol-Targeted Metabolomics. Molecules. (27):4. p. 1359. https://doi.org/10.3390/molecules27041359

Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. (2020): Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods. (9):12. p. 1785. https://doi.org/10.3390/foods9121785

Norocel, L.; Gutt, G. (2017): Study on the Evolution of Micro- and Macroelements During the Winemaking Stages: The Importance of Copper and Iron Quantification. Food and Environment Safety Journal. (16):1. pp. 5-12.

OIV (2019): OIV-MA-C1--01 Maximum acceptable limits of various substances contained in Wine, https://www.oiv.int/standards/compendium-of-international-methods-of-wine-and-must-analysis/annex-c/annex-c-maximum-acceptable-limits-of-various-substances/maximum-acceptable

Papunidze, S.; Papunidze, G.; Chkhartishvili, I.; Seidishvili, N.; Mikeladze, Z. (2019): Mineral Element Content of some Georgian wines. Annals of Agrarian Science. (17): pp. 361–374.

Pasvanka, K.; Tzachristas, A.; Proestos, C. (2019): Quality Tools in Wine Traceability and Authenticity. In: Quality Control in the Beverage Industry. (Eds.: Grumezescu, A.M. & Holban, A.M.). Woodhead Publishing. Duxford. ISBN 9780128166826

Perez-Trujillo, J.-P.; Barbaste, M.; Medina, B. (2002): Contents of Trace and Ultratrace Elements in Wines from the Canary Islands (Spain) as Determined by ICP-MS. Journal of Wine Research. (13)3: pp. 243–256. https://doi.org/10.1080/0957126022000046529

Pour Nikfardjam, M.S.; Gausz, I.S.; Farkas, V. (2012): Determination of manganese in musts and wines from three different wine regions of Hungary (Vintages 1992 to 2001). Mitteilungen Klosterneuburg. (62):4. pp. 143–153.

Rossi, S.; Bestulić, E.; Horvat, I.; Plavša, T.; Lukić, I.; Bubola, M.; Ganić, K.K.; Ćurko, N.; Korenika, .-M.J.; Radeka, S. (2022): Comparison of different winemaking processes for improvement of phenolic composition, macro- and microelemental content, and taste sensory attributes of Teran (Vitis vinifera L.) red wines. LWT. (154). p. 112619. https://doi.org/10.1016/j.lwt.2021.112619

Sass-Kiss, A.; Kiss, J.; Havadi, B.; Adányi, N. (2008): Multivariate statistical analysis of botrytised wines of different origin. Food Chemistry. (110):3. pp. 742–750. https://doi.org/10.1016/j.foodchem.2008.02.059

Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, M. (1999): Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology. (299). pp. 152-178.

Tariba, B. (2011): Metals in Wine—Impact on Wine Quality and Health Outcomes. Biological Trace Element Research. (144). pp. 143–156. https://doi.org/10.1007/s12011-011-9052-7

Tôrres, A.; da Silva Lyra, W.; de Andrade, S.I.E.; Andrade, R.A.N.; da Silva, E.C.; Araújo, M.C.U.; da Nóbrega Gaião, E. (2011): A digital image-based method for determining of total acidity in red wines using acid–base titration without indicator. Talanta. (84):3. pp. 601–606. https://doi.org/10.1016/j.talanta.2011.02.002

Varga, T.; Molnár, M.; Molnár, A.; Jull, A.; Palcsu, L.; László, E. (2023): Radiocarbon dating of microliter sized Hungarian Tokaj wine samples. Journal of Food Composition and Analysis. (118). p. 105203. https://doi.org/10.1016/j.jfca.2023.105203

Wang, J.; Capone, D.L.; Wilkinson, K.L.; Jeffery, D. (2016): Rosé wine volatile composition and the preferences of Chinese wine professionals. Food Chemistry. (202). pp. 507–517. https://doi.org/10.1016/j.foodchem.2016.02.042

WHO. (1983): Evaluation of certain food additives and contaminants: Twenty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series no. 696. Geneva, Switzerland.

WHO. (2011): Evaluation of certain food additives and contaminants: Seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series no. 966. Rome, Italy.

European Union. (2011): Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/ EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004.